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Abstract — This paper presents a robust
approach for the analysis of nonlinear microwave
autonomous circuits. A new formulation of the
Sample-Balance (SB) equation for autonomous
circuits completely suppresses the undesirable
degenerate (DC) solution. Three techniques are
combined to solve the SB equation: "signal
synchronization", "harmonic stepping", and pseudo
arc-length continuation. An example illustrates the
excellent convergence properties obtained.

I. I NTRODUCTION

The analysis of nonlinear microwave
autonomous circuits by steady-state frequency-
domain methods has received considerable attention
in the 1990s [1–7]. When compared to the analysis
of forced circuits, at least two additional problems
exist. First, the frequency of oscillation is not known
in advance. To accommodate this extra variable, the
standard procedure is to set the phase of a Fourier
coefficient of one of the circuit variables to an
arbitrary value. A consequence of this procedure is
that the DC solution (often called degenerate
solution) satisfies the circuit equations. Hence, it is
necessary to prevent convergence to this undesirable
solution. The other problem is finding the wanted
solution. Methods for solving systems of nonlinear
algebraic equations are only assured to converge
when a good estimate of the solution is available. In
forced circuits, source stepping can always be used
to go from the DC solution to a highly nonlinear
situation by solving a sequence of local problems. A
similar strategy is not possible for autonomous
circuits. Instead, the solution corresponding to a
highly nonlinear situation has to be reached directly
without a good previous estimate.

A robust approach based on Sample Balance
(SB) [8] for the analysis of nonlinear microwave
circuits was developed to address the problems
discussed in the preceding paragraph. The

degenerate solution is completely suppressed by a
new formulation of the SB equation. This
formulation can be readily adapted to Harmonic
Balance (HB) [9]. But, contrary to existing
formulations [4,5,7], no singularity is introduced in
the frequency-domain circuit equations.

To obtain an initial estimate of the solution, all
variables in the circuit are "synchronized" by
solving an auxiliary forced circuit using standard
techniques. This step is termed signal
synchronization. Another useful technique is
harmonic stepping. Whenever convergence
problems occur, the SB equations are initially
solved for a small number of harmonics where a
solution is easier to compute, even though the
solution thus obtained is corrupted by aliasing
errors. Then, the number of harmonics considered is
increased until the desired accuracy is attained. The
SB equation is solved by pseudo arc-length
continuation [9–11] with artificial parameter. In this
technique, the desired solution is reached by solving
a sequence of local problems. Although the
intermediate problems have no physical meaning,
convergence properties are greatly improved. To
illustrate the use of the approach described in this
paper, the simulation of a MESFET oscillator is
presented.

II. SUPPRESSION OF THE DEGENERATE SOLUTION

In SB, variables and equations are the inverse
discrete Fourier transforms of HB variables and
equations [9]. Therefore, SB variables and equations
are linearly related to their HB counterparts.
Although SB has interesting characteristics
regarding scaling of both variables and equations,
sparse matrix techniques can only be efficiently
employed in HB due to a sparser Jacobian.
However, when restricted to full matrix techniques,
SB and HB are roughly equivalent.
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Let ω 0 be the unknown fundamental frequency
of oscillation of an autonomous circuit. Following
[8], the SB equation can be cast in the form

0=−+= uxxixxvxF ),(),()(),( 00 ��ωω y (1)

where x is the vector of time samples of the
nonlinear subcircuit controlling variables, x�
contains samples of the first-order derivatives of the
controlling variables,1 y(ω 0) is a matrix related to
the linear subcircuit, v(⋅,⋅) and i(⋅,⋅) are nonlinear
functions that describe port voltages and currents of
the nonlinear subcircuit, and u is the vector of
samples of Norton equivalent independent (DC)
current sources. x�  is a function of both x and ω 0,
and can be computed either taking derivatives in the
frequency domain or using second (or higher) order
backward difference formulas [8,9].

In autonomous circuits, the time reference of
steady-state solutions is irrelevant and phase-shifted
solutions can be considered equivalent. To
accommodate the extra variable ω 0, the standard
procedure described in the Introduction is invariably
used. To prevent convergence to the degenerate
solution, Fourier coefficients of harmonics of
waveforms in the circuit are introduced in the
denominator of the HB equation [4,5,7]. Although
the HB error is likely to grow around the degenerate
solution, in such formulation a 0/0 singularity is
created at the degenerate solution.

The singularity formulation can give good
results, but 0/0 singularities may become
troublesome in numerical analysis problems. In the
new formulation described here, a sample of a
controlling variable, say x1(t0), is set to be off the
DC value of x1(t) by δ (Fig. 1), that is,
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where X1(0) is the DC value of x1(t) and N is the
number of samples. When solved together with (1),
this additional equation completely suppresses the
degenerate solution if δ ≠ 0, without introducing a
singularity. From (2),

                                                          
1 Higher-order derivatives may be considered if required.
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Hence, (3) is actually used to eliminate x1(t0) from
(1). The choice of δ is not critical. Provided δ is
compatible with the power level expected in the
circuit, convergence problems were not detected
even for small values of δ. The value of δ simply
sets a time reference. Typically, δ is set between
0.01 and 0.1 V for voltage variables.

Fig. 1.  Illustration of the meaning of (2).

III. S OLVING THE CIRCUIT EQUATIONS

Let y be a vector equal to x except that ω 0

replaces x1(t0). When (3) is used to eliminate x1(t0)
from (1), the SB equation can be written as G(y) =
0. To obtain good convergence properties even
when the initial estimate is far from the solution,
this equation is solved by a pseudo arc-length
continuation method similar to that described in
[10]. Because there is no natural continuation
parameter in autonomous circuits, a continuation
process with artificial parameter α is adopted,

0=−−=∆ )()1()(),( 0yGyGyH αα (4)

where y0 is the initial estimate of the solution.
Clearly, the solution of (4) for α = 0 is y0, while the
wanted solution corresponds to α = 1.  Starting at
(y0,0), the curve in the (y,α) space that attends (4) is
followed until α = 1. The curve is described using
the arc-length as parameter so that progress is
possible even when α decreases along the curve
[9,11]. This characteristic results in excellent
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convergence properties. Each point in the curve is
computed by solving a local problem using
Newton´s method. The algorithm developed uses
the step-doubling principle [10] and a predictor-
corrector scheme [9]. The Jacobian is computed
analytically and an appropriate strategy is required
to stop the algorithm exactly at α = 1.

There is no guarantee that an arbitrary initial
estimate is connected to the solution by a smooth
path that can be followed by the continuation
algorithm. However, tests have indicated that
convergence characteristics are greatly enhanced if
all variables in the initial estimate are
"synchronized". To obtain signal synchronization,
ω 0 is set to a constant value in the region where
oscillation is expected and a sinusoidal independent
source of large amplitude is introduced in a suitable
position in the circuit. For single FET oscillators,
this source is applied to the gate of the FET. The
resulting forced circuit is then solved by standard
techniques, and the solution is used as an initial
estimate for the autonomous problem. A different
technique to obtain signal synchronization was
discussed in [5].

Since convergence characteristics are generally
improved when the number of variables is reduced,
another useful technique is harmonic stepping. In
this technique, the SB equation is initially solved for
a small number of samples, and then this number is
increased until the desired accuracy is attained. The
solution of a problem is used as an initial estimate
for the subsequent problem with the aid of
sinusoidal interpolation. This technique was first
suggested in [4]. Harmonic stepping is only
employed when convergence problems occur. In
this case, good results were obtained with only one
intermediate step before solving the SB equation for
the desired number of samples.

IV. EXAMPLE OF SIMULATION

The MESFET oscillator designed in [12] was
simulated using the approach described in this
paper.  Fig. 2 shows the computed frequency of
oscillation as a function of the number of samples
considered. For more than 19 samples (9
harmonics), the frequency of oscillation did not vary
significantly. In the remaining simulations, the
number of samples was then held equal to 19. The
relatively large errors in the computed frequencies
for small numbers of samples are, to a certain

extent, due to the calculation of derivatives using a
second-order backward difference formula. Clearly,
this formula does not yield an acceptable accuracy
for a small number of samples. Calculating
derivatives in the frequency domain will reduce this
effect, although no appreciable difference is
expected as the number of samples approaches the
minimum required for good accuracy.

Gate and drain voltage waveforms for the
original design are displayed in Fig. 3. The feedback
circuitry used in the design comprises a series LC
circuit between gate and drain. The oscillation
frequency as a function of the value of the feedback
inductor is in Fig. 4, and in all cases convergence
was fast and smooth. In particular, as a consequence
of signal synchronization, the paths followed by the
pseudo arc-length continuation algorithm had
simple shapes.
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Fig. 2. Computed frequency of oscillation as a function
of the number of time-domain samples
considered.
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Fig. 3. Gate and drain voltage waveforms for an 1.5-nH
feedback inductor.
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Fig. 4. Frequency of oscillation as a function of the value
of the feedback inductor.

V. CONCLUSION

A new approach has been presented for the
analysis of nonlinear autonomous circuits by
frequency-domain methods. This approach provides
effective answers to the problems of unwanted
convergence to the DC solution and computation of
the desired solution. The excellent convergence
properties obtained were illustrated through the
simulation of a MESFET oscillator.

Although implemented for Sample Balance, the
approach described here can be readily adapted to
Harmonic Balance analysis of nonlinear microwave
autonomous circuits.
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